Experimental tests of the new paradigm for laser filamentation in gases.
نویسندگان
چکیده
Since their discovery in the mid-1990s, ultrafast laser filaments in gases have been described as products of a dynamic balance between Kerr self-focusing and defocusing by free electric charges that are generated via multiphoton ionization on the beam axis. This established paradigm has been recently challenged by a suggestion that the Kerr effect saturates and even changes sign at high intensity of light and that this sign reversal, not free-charge defocusing, is the dominant mechanism responsible for the extended propagation of laser filaments. We report qualitative tests of the new theory based on electrical and optical measurements of plasma density in femtosecond laser filaments. Our results consistently support the established paradigm.
منابع مشابه
Self-stabilization of third-harmonic pulse during two-color filamentation in gases
Self-stabilization of the laser pulse parameters is demonstrated during the two-color filamentation of ultrashort and intense laser pulses in gases. Experimental data and results of numerical simulations show, in good qualitative agreement, that the root-mean-square values of the intensity fluctuations decrease below the initial value for the near-infrared pump pulse and the perturbative limit ...
متن کاملDramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments
Broadband laser sources based on supercontinuum generation in femtosecond laser filamentation have enabled applications from stand-off sensing and spectroscopy to the generation and self-compression of high-energy few-cycle pulses. Filamentation relies on the dynamic balance between self-focusing and plasma defocusing - mediated by the Kerr nonlinearity and multiphoton or tunnel ionization, res...
متن کاملPhysics and applications of atmospheric nonlinear optics and filamentation.
We review the properties and applications of ultrashort laser pulses in the atmosphere, with a particular focus on filamentation. Filamentation is a non-linear propagation regime specific of ultrashort and ultraintense laser pulses in the atmosphere. Typical applications include remote sensing of atmospheric gases and aerosols, lightning control, laser-induced spectroscopy, coherent anti-stokes...
متن کاملThe extreme nonlinear optics of gases and femtosecond optical filamentation
Under certain conditions, powerful ultrashort laser pulses can form greatly extended, propagating filaments of concentrated high intensity in gases, leaving behind a very long trail of plasma. Such filaments can be much longer than the longitudinal scale over which a laser beam typically diverges by diffraction, with possible applications ranging from laser-guided electrical discharges to high ...
متن کاملNonlinear Propagation of a Femtosecond Laser Pulse in Gases: Properties and Applications
When an intense femtosecond laser pulse propagates in a gas, it undergoes fila-mentation, a spectacular process where the pulse spatial, spectral and temporalcharacteristics change considerably. A thin short-lived plasma column is formed inthe wake of the propagating pulse. My PhD work has been dedicated to the furtherunderstanding of the filamentation process. In a first pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 106 15 شماره
صفحات -
تاریخ انتشار 2011